LogarithmPlotter/common/src/module/expreval.mjs

116 lines
4.4 KiB
JavaScript

/**
* LogarithmPlotter - 2D plotter software to make BODE plots, sequences and distribution functions.
* Copyright (C) 2021-2024 Ad5001
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
import { Module } from "./common.mjs"
import { Parser } from "../lib/expr-eval/parser.mjs"
const evalVariables = {
// Variables not provided by expr-eval.js, needs to be provided manually
"pi": Math.PI,
"PI": Math.PI,
"π": Math.PI,
"inf": Infinity,
"infinity": Infinity,
"Infinity": Infinity,
"∞": Infinity,
"e": Math.E,
"E": Math.E,
"true": true,
"false": false
}
class ExprParserAPI extends Module {
#parser = new Parser()
constructor() {
super("ExprParser")
this.currentVars = {}
this.#parser = new Parser()
this.#parser.consts = Object.assign({}, this.#parser.consts, evalVariables)
this.#parser.functions.integral = this.integral.bind(this)
this.#parser.functions.derivative = this.derivative.bind(this)
}
/**
* Parses arguments for a function, returns the corresponding JS function if it exists.
* Throws either usage error otherwise.
* @param {array} args - Arguments of the function, either [ ExecutableObject ] or [ string, variable ].
* @param {string} usage1 - Usage for executable object.
* @param {string} usage2 - Usage for string function.
* @return {function} JS function to call.
*/
parseArgumentsForFunction(args, usage1, usage2) {
let f, variable
if(args.length === 1) {
// Parse object
f = args[0]
if(typeof f !== "object" || !f.execute)
throw EvalError(qsTranslate("usage", "Usage:\n%1").arg(usage1))
let target = f
f = (x) => target.execute(x)
} else if(args.length === 2) {
// Parse variable
[f, variable] = args
if(typeof f !== "string" || typeof variable !== "string")
throw EvalError(qsTranslate("usage", "Usage:\n%1").arg(usage2))
f = this.#parser.parse(f).toJSFunction(variable, this.currentVars)
} else
throw EvalError(qsTranslate("usage", "Usage:\n%1\n%2").arg(usage1).arg(usage2))
return f
}
/**
* @param {string} expression - Expression to parse
* @returns {ExprEvalExpression}
*/
parse(expression) {
return this.#parser.parse(expression)
}
integral(a = null, b = null, ...args) {
let usage1 = qsTranslate("usage", "integral(<from: number>, <to: number>, <f: ExecutableObject>)")
let usage2 = qsTranslate("usage", "integral(<from: number>, <to: number>, <f: string>, <variable: string>)")
let f = this.parseArgumentsForFunction(args, usage1, usage2)
if(typeof a !== "number" || typeof b !== "number")
throw EvalError(qsTranslate("usage", "Usage:\n%1\n%2").arg(usage1).arg(usage2))
// https://en.wikipedia.org/wiki/Simpson%27s_rule
// Simpler, faster than tokenizing the expression
return (b - a) / 6 * (f(a) + 4 * f((a + b) / 2) + f(b))
}
derivative(...args) {
let usage1 = qsTranslate("usage", "derivative(<f: ExecutableObject>, <x: number>)")
let usage2 = qsTranslate("usage", "derivative(<f: string>, <variable: string>, <x: number>)")
let x = args.pop()
let f = this.parseArgumentsForFunction(args, usage1, usage2)
if(typeof x !== "number")
throw EvalError(qsTranslate("usage", "Usage:\n%1\n%2").arg(usage1).arg(usage2))
let derivative_precision = 1e-8
return (f(x + derivative_precision / 2) - f(x - derivative_precision / 2)) / derivative_precision
}
}
/** @type {ExprParserAPI} */
Modules.ExprParser = Modules.ExprParser || new ExprParserAPI()
export default Modules.ExprParser