LogarithmPlotter/qml/js/utils.js

348 lines
12 KiB
JavaScript
Raw Normal View History

/**
* Logarithm Graph Creator - Create graphs with logarithm scales.
* Copyright (C) 2020 Ad5001
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
.pragma library
var powerpos = {
"-": "⁻",
"+": "⁺",
"=": "⁼",
" ": "",
"(": "⁽",
")": "⁾",
"0": "⁰",
"1": "¹",
"2": "²",
"3": "³",
"4": "⁴",
"5": "⁵",
"6": "⁶",
"7": "⁷",
"8": "⁸",
"9": "⁹",
"a": "ᵃ",
"b": "ᵇ",
"c": "ᶜ",
"d": "ᵈ",
"e": "ᵉ",
"f": "ᶠ",
"g": "ᵍ",
"h": "ʰ",
"i": "ⁱ",
"j": "ʲ",
"k": "ᵏ",
"l": "ˡ",
"m": "ᵐ",
"n": "ⁿ",
"o": "ᵒ",
"p": "ᵖ",
"r": "ʳ",
"s": "ˢ",
"t": "ᵗ",
"u": "ᵘ",
"v": "ᵛ",
"w": "ʷ",
"x": "ˣ",
"y": "ʸ",
"z": "ᶻ"
}
var indicepos = {
"-": "₋",
"+": "₊",
"=": "₌",
"(": "₍",
")": "₎",
" ": "",
"0": "₀",
"1": "₁",
"2": "₂",
"3": "₃",
"4": "₄",
"5": "₅",
"6": "₆",
"7": "₇",
"8": "₈",
"9": "₉",
"a": "ₐ",
"e": "ₑ",
"h": "ₕ",
"i": "ᵢ",
"j": "ⱼ",
"k": "ₖ",
"l": "ₗ",
"m": "ₘ",
"n": "ₙ",
"o": "ₒ",
"p": "ₚ",
"r": "ᵣ",
"s": "ₛ",
"t": "ₜ",
"u": "ᵤ",
"v": "ᵥ",
"x": "ₓ",
}
// Put a text in sup position
function textsup(text) {
var ret = ""
text = text.toString()
for (var i = 0; i < text.length; i++) {
if(Object.keys(powerpos).indexOf(text[i]) >= 0) {
ret += powerpos[text[i]]
} else {
ret += text[i]
}
}
return ret
}
// Put a text in sub position
function textsub(text) {
var ret = ""
text = text.toString()
for (var i = 0; i < text.length; i++) {
if(Object.keys(indicepos).indexOf(text[i]) >= 0) {
ret += indicepos[text[i]]
} else {
ret += text[i]
}
}
return ret
}
function simplifyExpression(str) {
var replacements = [
// Operations not done by parser.
[// Decomposition way 2
/(^.?|[+-] |\()([-.\d\w]+) ([*/]) \((([-.\d\w] [*/] )?[-\d\w.]+) ([+\-]) (([-.\d\w] [*/] )?[\d\w.+]+)\)(.?$| [+-]|\))/g,
"$1$2 $3 $4 $6 $2 $3 $7$9"
],
[ // Decomposition way 2
/(^.?|[+-] |\()\((([-.\d\w] [*/] )?[-\d\w.]+) ([+\-]) (([-.\d\w] [*/] )?[\d\w.+]+)\) ([*/]) ([-.\d\w]+)(.?$| [+-]|\))/g,
"$1$8 $7 $2 $4 $8 $7 $5$9"
],
[ // Factorisation of π elements.
/(([-\d\w.]+ [*/] )*)(pi|π)(( [/*] [-\d\w.]+)*) ([+-]) (([-\d\w.]+ [*/] )*)(pi|π)(( [/*] [-\d\w.]+)*)?/g,
function(match, m1, n1, pi1, m2, ope2, n2, opeM, m3, n3, pi2, m4, ope4, n4) {
// g1, g2, g3 , g4, g5, g6, g7, g8, g9, g10, g11,g12 , g13
// We don't care about mx & pix, ope2 & ope4 are either / or * for n2 & n4.
// n1 & n3 are multiplied, opeM is the main operation (- or +).
// Putting all n in form of number
//n2 = n2 == undefined ? 1 : parseFloat(n)
n1 = m1 == undefined ? 1 : eval(m1 + '1')
n2 = m2 == undefined ? 1 : eval('1' + m2)
n3 = m3 == undefined ? 1 : eval(m3 + '1')
n4 = m4 == undefined ? 1 : eval('1' + m4)
//var [n1, n2, n3, n4] = [n1, n2, n3, n4].map(n => n == undefined ? 1 : parseFloat(n))
// Falling back to * in case it does not exist (the corresponding n would be 1)
var [ope2, ope4] = [ope2, ope4].map(ope => ope == '/' ? '/' : '*')
var coeff1 = n1*n2
var coeff2 = n3*n4
var coefficient = coeff1+coeff2-(opeM == '-' ? 2*coeff2 : 0)
return `${coefficient} * π`
}
],
[ // Removing parenthesis when content is only added from both sides.
/(^.?|[+-] |\()\(([^)(]+)\)(.?$| [+-]|\))/g,
function(match, b4, middle, after) {return `${b4}${middle}${after}`}
],
[ // Removing parenthesis when content is only multiplied.
/(^.?|[*\/] |\()\(([^)(+-]+)\)(.?$| [*\/+-]|\))/g,
function(match, b4, middle, after) {return `${b4}${middle}${after}`}
],
[ // Removing parenthesis when content is only multiplied.
/(^.?|[*\/-+] |\()\(([^)(+-]+)\)(.?$| [*\/]|\))/g,
function(match, b4, middle, after) {return `${b4}${middle}${after}`}
],
[// Simplification additions/substractions.
/(^.?|[^*\/] |\()([-.\d]+) (\+|\-) (\([^)(]+\)|[^)(]+) (\+|\-) ([-.\d]+)(.?$| [^*\/]|\))/g,
function(match, b4, n1, op1, middle, op2, n2, after) {
var total
if(op2 == '+') {
total = parseFloat(n1) + parseFloat(n2)
} else {
total = parseFloat(n1) - parseFloat(n2)
}
return `${b4}${total} ${op1} ${middle}${after}`
}
],
[// Simplification multiplications/divisions.
/([-.\d]+) (\*|\/) (\([^)(]+\)|[^)(+-]+) (\*|\/) ([-.\d]+)/g,
function(match, n1, op1, middle, op2, n2) {
if(parseInt(n1) == n1 && parseInt(n2) == n2 && op2 == '/' &&
(parseInt(n1) / parseInt(n2)) % 1 != 0) {
// Non int result for int division.
return `(${n1} / ${n2}) ${op1} ${middle}`
} else {
if(op2 == '*') {
return `${parseFloat(n1) * parseFloat(n2)} ${op1} ${middle}`
} else {
return `${parseFloat(n1) / parseFloat(n2)} ${op1} ${middle}`
}
}
}
],
[// Starting & ending parenthesis if not needed.
/^\((.*)\)$/g,
function(match, middle) {
var str = middle
// Replace all groups
while(/\([^)(]+\)/g.test(str))
str = str.replace(/\([^)(]+\)/g, '')
// There shouldn't be any more parenthesis
// If there is, that means the 2 parenthesis are needed.
if(!str.includes(')') && !str.includes('(')) {
return middle
} else {
return `(${middle})`
}
}
],
// Simple simplifications
[/(\s|^|\()0(\.0+)? \* (\([^)(]+\))/g, '$10'],
[/(\s|^|\()0(\.0+)? \* ([^)(+-]+)/g, '$10'],
[/(\([^)(]\)) \* 0(\.0+)?(\s|$|\))/g, '0$3'],
[/([^)(+-]) \* 0(\.0+)?(\s|$|\))/g, '0$3'],
[/(\s|^|\()1(\.0+)? (\*|\/) /g, '$1'],
[/(\s|^|\()0(\.0+)? (\+|\-) /g, '$1'],
[/ (\*|\/) 1(\.0+)?(\s|$|\))/g, '$3'],
[/ (\+|\-) 0(\.0+)?(\s|$|\))/g, '$3'],
[/(^| |\() /g, '$1'],
[/ ($|\))/g, '$1'],
]
// Replacements
var found
do {
found = false
for(var replacement of replacements)
while(replacement[0].test(str)) {
found = true
str = str.replace(replacement[0], replacement[1])
}
} while(found)
return str
}
function makeExpressionReadable(str) {
var replacements = [
// variables
[/pi/g, 'π'],
[/Infinity/g, '∞'],
[/inf/g, '∞'],
// Other
[/ \* /g, '×'],
[/ \^ /g, '^'],
[/\^\(([^\^]+)\)/g, function(match, p1) { return textsup(p1) }],
[/\^([^ ]+)/g, function(match, p1) { return textsup(p1) }],
2020-12-25 19:42:13 +00:00
[/_\(([^_]+)\)/g, function(match, p1) { return textsub(p1) }],
[/_([^ ]+)/g, function(match, p1) { return textsub(p1) }],
[/\[([^\[\]]+)\]/g, function(match, p1) { return textsub(p1) }],
[/(\d|\))×/g, '$1'],
2020-12-25 19:42:13 +00:00
//[/×(\d|\()/g, '$1'],
[/\(([^)(+.\/-]+)\)/g, "$1"],
[/integral\((.+), ?(.+), ("|')(.+)("|'), ?("|')(.+)("|')\)/g, function(match, a, b, p1, body, p2, p3, by, p4) {
console.log('Intégrale', a, b, body, by)
if(a.length < b.length) {
return `${textsub(a)}${textsup(b)} ${body} d${by}`
} else {
return `${textsup(b)}${textsub(a)} ${body} d${by}`
}
}]
]
str = simplifyExpression(str)
// Replacements
for(var replacement of replacements)
while(replacement[0].test(str))
str = str.replace(replacement[0], replacement[1])
return str
}
function parseName(str, removeUnallowed = true) {
var replacements = [
// Greek letters
2020-12-22 17:22:38 +00:00
[/([^a-z]|^)al(pha)?([^a-z]|$)/g, '$1α$3'],
[/([^a-z]|^)be(ta)?([^a-z]|$)/g, '$1β$3'],
[/([^a-z]|^)ga(mma)?([^a-z]|$)/g, '$1γ$3'],
[/([^a-z]|^)de(lta)?([^a-z]|$)/g, '$1δ$3'],
[/([^a-z]|^)ep(silon)?([^a-z]|$)/g, '$1ε$3'],
[/([^a-z]|^)ze(ta)?([^a-z]|$)/g, '$1ζ$3'],
[/([^a-z]|^)et(a)?([^a-z]|$)/g, '$1η$3'],
[/([^a-z]|^)th(eta)?([^a-z]|$)/g, '$1θ$3'],
[/([^a-z]|^)io(ta)?([^a-z]|$)/g, '$1ι$3'],
[/([^a-z]|^)ka(ppa)([^a-z]|$)?/g, '$1κ$3'],
[/([^a-z]|^)la(mbda)?([^a-z]|$)/g, '$1λ$3'],
[/([^a-z]|^)mu([^a-z]|$)/g, '$1μ$2'],
[/([^a-z]|^)nu([^a-z]|$)/g, '$1ν$2'],
[/([^a-z]|^)xi([^a-z]|$)/g, '$1ξ$2'],
[/([^a-z]|^)rh(o)?([^a-z]|$)/g, '$1ρ$3'],
[/([^a-z]|^)si(gma)?([^a-z]|$)/g, '$1σ$3'],
[/([^a-z]|^)ta(u)?([^a-z]|$)/g, '$1τ$3'],
[/([^a-z]|^)up(silon)?([^a-z]|$)/g, '$1υ$3'],
[/([^a-z]|^)ph(i)?([^a-z]|$)/g, '$1φ$3'],
[/([^a-z]|^)ch(i)?([^a-z]|$)/g, '$1χ$3'],
[/([^a-z]|^)ps(i)?([^a-z]|$)/g, '$1ψ$3'],
[/([^a-z]|^)om(ega)?([^a-z]|$)/g, '$1ω$3'],
// Capital greek letters
2020-12-22 17:22:38 +00:00
[/([^a-z]|^)gga(mma)?([^a-z]|$)/g, '$1Γ$3'],
[/([^a-z]|^)gde(lta)?([^a-z]|$)/g, '$1Δ$3'],
[/([^a-z]|^)gth(eta)?([^a-z]|$)/g, '$1Θ$3'],
[/([^a-z]|^)gla(mbda)?([^a-z]|$)/g, '$1Λ$3'],
[/([^a-z]|^)gxi([^a-z]|$)/g, '$1Ξ$2'],
[/([^a-z]|^)gpi([^a-z]|$)/g, '$1Π$2'],
[/([^a-z]|^)gsi(gma)([^a-z]|$)?/g, '$1Σ$3'],
[/([^a-z]|^)gph(i)?([^a-z]|$)/g, '$1Φ$3'],
[/([^a-z]|^)gps(i)?([^a-z]|$)/g, '$1Ψ$3'],
[/([^a-z]|^)gom(ega)?([^a-z]|$)/g, '$1Ω$3'],
// Underscores
2020-12-25 19:42:13 +00:00
[/_\(([^_]+)\)/g, function(match, p1) { return textsub(p1) }],
[/_([^ ]+)/g, function(match, p1) { return textsub(p1) }],
2020-12-25 19:42:13 +00:00
// Array elements
[/\[([^\]\[]+)\]/g, function(match, p1) { return textsub(p1) }],
// Removing
[/[xπ\\∪∩\]\[ ()^/÷*×+=\d-]/g , ''],
]
if(!removeUnallowed) replacements.pop()
// Replacements
for(var replacement of replacements)
str = str.replace(replacement[0], replacement[1])
return str
}
String.prototype.toLatinUppercase = function() {
return this.replace(/[a-z]/g, function(match){return match.toUpperCase()})
}
function camelCase2readable(label) {
var parsed = parseName(label, false)
return parsed.charAt(0).toLatinUppercase() + parsed.slice(1).replace(/([A-Z])/g," $1")
}
2020-12-22 23:23:38 +00:00
function getRandomColor() {
var clrs = '0123456789ABCDEF';
var color = '#';
for(var i = 0; i < 6; i++) {
color += clrs[Math.floor(Math.random() * (16-5*(i%2==0)))];
2020-12-22 23:23:38 +00:00
}
return color;
}