/** * LogarithmPlotter - 2D plotter software to make BODE plots, sequences and distribution functions. * Copyright (C) 2021-2024 Ad5001 * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ import { Module } from "./common.mjs" import { Parser } from "../lib/expr-eval/parser.mjs" const EVAL_VARIABLES = { // Variables not provided by expr-eval.js, needs to be provided manually "pi": Math.PI, "PI": Math.PI, "π": Math.PI, "inf": Infinity, "infinity": Infinity, "Infinity": Infinity, "∞": Infinity, "e": Math.E, "E": Math.E, "true": true, "false": false } class ExprParserAPI extends Module { #parser = new Parser() constructor() { super("ExprParser") this.currentVars = {} this.#parser = new Parser() this.#parser.consts = Object.assign({}, this.#parser.consts, EVAL_VARIABLES) this.#parser.functions.integral = this.integral.bind(this) this.#parser.functions.derivative = this.derivative.bind(this) } /** * Parses arguments for a function, returns the corresponding JS function if it exists. * Throws either usage error otherwise. * @param {array} args - Arguments of the function, either [ ExecutableObject ] or [ string, variable ]. * @param {string} usage1 - Usage for executable object. * @param {string} usage2 - Usage for string function. * @return {function} JS function to call. */ parseArgumentsForFunction(args, usage1, usage2) { let f, variable if(args.length === 1) { // Parse object f = args[0] if(typeof f !== "object" || !f.execute) throw EvalError(qsTranslate("usage", "Usage:\n%1").arg(usage1)) let target = f f = (x) => target.execute(x) } else if(args.length === 2) { // Parse variable [f, variable] = args if(typeof f !== "string" || typeof variable !== "string") throw EvalError(qsTranslate("usage", "Usage:\n%1").arg(usage2)) f = this.#parser.parse(f).toJSFunction(variable, this.currentVars) } else throw EvalError(qsTranslate("usage", "Usage:\n%1\n%2").arg(usage1).arg(usage2)) return f } /** * @param {string} expression - Expression to parse * @returns {ExprEvalExpression} */ parse(expression) { return this.#parser.parse(expression) } integral(a = null, b = null, ...args) { let usage1 = qsTranslate("usage", "integral(, , )") let usage2 = qsTranslate("usage", "integral(, , , )") let f = this.parseArgumentsForFunction(args, usage1, usage2) if(typeof a !== "number" || typeof b !== "number") throw EvalError(qsTranslate("usage", "Usage:\n%1\n%2").arg(usage1).arg(usage2)) // https://en.wikipedia.org/wiki/Simpson%27s_rule // Simpler, faster than tokenizing the expression return (b - a) / 6 * (f(a) + 4 * f((a + b) / 2) + f(b)) } derivative(...args) { let usage1 = qsTranslate("usage", "derivative(, )") let usage2 = qsTranslate("usage", "derivative(, , )") let x = args.pop() let f = this.parseArgumentsForFunction(args, usage1, usage2) if(typeof x !== "number") throw EvalError(qsTranslate("usage", "Usage:\n%1\n%2").arg(usage1).arg(usage2)) let derivative_precision = 1e-8 return (f(x + derivative_precision / 2) - f(x - derivative_precision / 2)) / derivative_precision } } /** @type {ExprParserAPI} */ Modules.ExprParser = Modules.ExprParser || new ExprParserAPI() export default Modules.ExprParser